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The Approach Based on Tidal Tensors — Motivation

Propose a new approach based on general, exact, and covariant
equations, with which we aim to:

» Clarify the relationship between the various
gravito-electromagnetic analogies found in literature, as well as
issues within each of them;

» Search for the underlying principle behind the physical analogy
between linearized Gravity and Electromagnetism;

> Introduce a new formalism allowing for a transparent
comparison between the two interactions, and to study the
physical similarities between them at a more fundamental level.



The Approach Based on Tidal Tensors — Guiding Principle

> A transparent comparison between the electromagnetic and
gravitational interactions must be based on quantities common
to both theories;

> the electromagnetic interaction is based on forces;

> but gravity is pure geometry, the only physical, covariant forces
are tidal forces (tidal forces are the true signature of gravity!)

» Therefore: tidal forces should be the starting point for our
approach.



Electric-type Tidal Tensors

Tidal forces are described in an invariant way through the wordline
deviation equations:

e Electromagnetic
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which yield the acceleration of the vector 0x® connecting two
particles with the same (Ciufolini, 1986) 4-velocity U — and the

same g/m ratio in the electromagnetic case.
(Notation: Fo3 = Maxwell tensor, Ra3,- = Riemann tensor)



Electric-type Tidal Tensors

Tidal forces are described in an invariant way through the wordline
deviation equations:

e Electromagnetic
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> Suggests the physical analogy: E.z «— E.z3

> E,g3 is the covariant derivative of the electric field

E* = F**U, measured by the observer with (fixed) 4-velocity
ue;



Electric-type Tidal Tensors

Tidal forces are described in an invariant way through the wordline
deviation equations:

e Electromagnetic
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U(J, U(J, D2 63’:&

et 2
ox Dr

S nleY ¥ a — pa Brro
— —E* 627, E° =R% UU
> Suggests the physical analogy: E.3 «— E.z3

» Hence:

» E,p = electric tidal tensor; E.3 = gravito-electric tidal tensor.



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal effects:

e Electromagnetic Force on a Magnetic Dipole

(Covariant form for Figp; = V(fi.B))
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e Gravitational Force on a Gyroscope
(Papapetrou-Pirani equation)
DP*
Dt

e

— « a a Brro
= —HOSY, H® =xR% USU

Notation: * = Hodge dual; S = spin 4-vector.

> Suggests the physical analogy: B3 «— H,3



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal effects:

e Electromagnetic Force on a Magnetic Dipole

(Covariant form for Figp; = V(fi.B))
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e Gravitational Force on a Gyroscope
(Papapetrou-Pirani equation)
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> B,s measures the tidal effects produced by the magnetic field
B® = «F*"U, seen by the observer of 4-velocity U*.



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal effects:

e Electromagnetic Force on a Magnetic Dipole

(Covariant form for Figp; = V(fi.B))

- Fgy =5 =0BPSY . B =sFg,U”

e Gravitational Force on a Gyroscope
(Papapetrou-Pirani equation)
DpP~
Dt

e

— « a a Brro
= —HOSY, H® =xR% USU

» Hence: B,3 = magnetic tidal tensor; H,z = gravito-magnetic
tidal tensor.



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal effects:

e Electromagnetic Force on a Magnetic Dipole

(Covariant form for Figp; = V(fi.B))
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< Fgy = —p— =0B}S", B =xFg U

e Gravitational Force on a Gyroscope
(Papapetrou-Pirani equation)
DpP~
Dt

a _ « a a Brro
Fg — _H*S7, HY =xR%  U°U

» 0 = u/S = gyromagnetic ratio = equals 1 for gravity
=S



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal effects:

e Electromagnetic Force on a Magnetic Dipole

(Covariant form for Figp; = V(fi.B))

=oBS", B% =*F% U’

_ o Gravitational Force on a Gyroscope

V" (Papapetrou-Pirani equation)
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» Relative minus sign: mass/charges of the same sign

attract/repel one another = antiparallel charge/mass currents

repel /attract.



Maxwell's Equations: Tidal tensors and sources

» Maxwell's equations may be cast, in an explicitly covariant
form, as equations for tidal tensors and sources:



Maxwell's Equations: Tidal tensors and sources

Maxwell Equations

Tidal tensor form Non-covariant form
ES, = 4mpc V.E = 4np,
B, =0 V.B=0
. 9B
1

Epap = 2Fapn U7 VxE= "ot
1 ,6 . = 8E -
B[a,@] =35% Fopr U’ — 2meqgoqj7 U7 VxB= Ot + 4my

(/¢ = Charge current 4-vector; p. = —j“ U, = charge density — as measured

by the observer with 4-velocity U% )



Maxwell's Equations: Tidal tensors and sources

Maxwell Equations

Tidal tensor form Non-covariant form
E, = dmpc V.E = 4rp,
_ OB
1
E[Ufﬁlzi"__aﬁ;wu7 VXE:7E
1 /[3 o |y = OE -
B[aﬁ] =2* FO{ﬁ;WU - 2776&607./ U VxB= E + 4my

» Decomposing: Fupy = 2UjoEgly + €apuo B U7, we see that
Maxwell's equations indeed involve only tidal tensors and
sources.



The Gravitational analogue of Maxwell’s Equations

By performing, on the gravitational tidal tensors, the same
operations that led to Maxwell's equations, i.e, taking the traces
and antisymmetric parts, we obtain the analogous set of equations:



The Gravitational analogue of Maxwell’s Equations

Electromagnetism Gravity
Maxwell Equations Egs. Grav. Tidal Tensors
E®, = 4mp, E% =47 (2pm + T4)
B =0 H*, =0
s = SFan U7 By — 0

Blag) = %* Fopg.y Us — 2m€nBorny” U7 Hng) = —4meapoyJ” U7

» Strikingly similar when the setups are stationary in the
observer's rest frame. Otherwise, tell us that gravitational and
electromagnetic interactions differ significantly, since the tidal
tensors do not have the same symmetries.



The Gravitational analogue of Maxwell’s Equations

Electromagnetism

Maxwell Equations

ES, = 4mp,
B%, =0

Eag) = 3Fapr U

Blag] = 5 * Fapy U? — 2meqporj” U7

Gravity
Egs. Grav. Tidal Tensors

E®, =47 (2pm+ T2)

(e}

H*, =0

Efag =0

H[aﬁ] = —47T€aﬁo-,y./g U7

» Charges: the gravitational analogue of p¢ is 2pm + T,
(pm + 3p for a perfect fluid) = in gravity, pressure and all
material stresses contribute as sources.



The Gravitational analogue of Maxwell’s Equations

Electromagnetism Gravity
Maxwell Equations Egs. Grav. Tidal Tensors
E®, = 47p. E®, =47 (2pm+ T2)
B =0 H*, =0
1
Elag) = 3Fapn U Ejag =0

B[Oéﬁ] = %* Faopy UP — 2m€nBorny” U7 H[aﬁ] = —4meago,d7 U7

» Ampére law: in stationary (in the observer's rest frame)
setups, equations By, and Hj,g match up to a factor of 2 =
currents of mass/energy source gravitomagnetism like currents
of charge source magnetism.



The Gravitational analogue of Maxwell’s Equations

Electromagnetism Gravity
Maxwell Equations Egs. Grav. Tidal Tensors
E®, = 4mp. E®, =47 (2pm+ T2)
B%, =0 H*, =0
Ejop) = 2Fapy U7 Efop) = 0

B[aﬁ] = %* Fop.y us — 2m€nBorny” U7 H[aﬁ] = —4menpeyJ7 U7

» Absence of electromagnetic-like induction effects in gravity:

» K, always symmetric = no gravitational analogue to
Faraday's law of induction!



The Gravitational analogue of Maxwell’s Equations

Electromagnetism Gravity
Maxwell Equations Egs. Grav. Tidal Tensors
E®, = 47p. E®, =47 (2pm + T2)
B =0 H*, =0
1
Elap) = 3Fapn U Ejap =0

B[aﬁ] = % * Fapiy us — 2m€nBorny” U7 H[aﬁ] = —4menpeyJ7 U7

» Absence of electromagnetic-like induction effects in gravity:

» Induction term xF,g., U7 in B3 has no counterpart in Hi,g
= no gravitational analogue to the magnetic fields induced by
time varying electric fields.



Electromagnetism Gravity

Maxwell Field Equations Einstein Field Equations
Fol =00 Ruv =87 (T — 38 T%)

eTime Projection: eTime-Time Projection:

E®, = 47mp, E® =41 (2pm+ TC)

eSpace Projection: e Time-Space Projection:

B[a[)’] = %* F(wWUﬁ — QWEQBUWJIJUV H[aﬁ] = *4-71'606507.]0(]7

Bianchi Identities: (Algebraic) Bianchi Identities:
B, =0 H*, =0
Ejap) = 3 Fapn U Ejag) =0

» Space-Space part of Einstein’s equations (involving the tensor
Fop = *R xqup, U UY) has no electromagnetic analogue.



Electromagnetism Gravity

Maxwell Field Equations Einstein Field Equations
Fol =00 Ruv =87 (T — 38 T%)

eTime Projection: eTime-Time Projection:

E®, = 47mp, E® =41 (2pm+ TC)

eSpace Projection: e Time-Space Projection:

B[a[)’] = %* F(wWUﬁ — QWEQBUWJIJUV H[aﬁ] = *4-71'606507.]0(]7

Bianchi Identities: (Algebraic) Bianchi Identities:
B, =0 H*, =0
Ejap) = 3 Fapn U Ejag) =0

» By replacing {E,3, Bag} <—{Eqag, Has} in Maxwell equations,
one almost obtains some of Einstein’s equations!



Comparison with Linear approach to GEM

Egs. Grav. Tidal Tensors Linearized theory
(exact, covariant) (non-covariant)
E®, = 47 (2pm + T2) V.E¢ = 4mppm
H®, =0 V.Bg =0
Ejag =0 VxEg=0
H[QB] = —4meago,J7 U %V X B_’G — 47 ]

» Equations for Gravitational Tidal Tensors are a generalization,
for arbitrary fields and frames, of the “gravitoelectromagnetic”
equations derived in literature (eg. Thorne et al., 1977; Harris,
1991; Ciufolini & Wheeler, 1995; Ruggiero & Tartaglia, 2002).



Comparison with Linear approach to GEM

Egs. Grav. Tidal Tensors Linearized theory
(exact, covariant) (non-covariant)
E®, = 47 (2pm + T2) V.Eg = 47pm
H*, =0 V.Bg =0
- 10B¢
1 - - OE
H[Oéﬁ] = —47rea5MJ"UV EV X BG = 47TJ+67tG

» Physical analogy based on linear GEM is restricted to
stationary phenomena (sheds light on ongoing debate).



Matching Between Tidal Tensors

The analogy based on tidal tensors does not rely on a similarity
between the tidal tensors.

» Despite playing analogous roles in dynamics, gravitational and
electromagnetic tidal tensors are generically very different:

» gravitational tidal tensors are non-linear, spatial and symmetric
(in vacuum, in the magnetic case);

> electromagnetic tidal tensors are linear and generically
non-symmetric and non-spatial.



Matching Between Tidal Tensors

The analogy based on tidal tensors does not rely on a similarity
between the tidal tensors.

» Despite playing analogous roles in dynamics, gravitational and
electromagnetic tidal tensors are generically very different:
» gravitational tidal tensors are non-linear, spatial and symmetric
(in vacuum, in the magnetic case);

> electromagnetic tidal tensors are linear and generically
non-symmetric and non-spatial.

Nevertheless, a matching occurs under certain special conditions.



Spinning Charge vs Spinning Mass

Consider the elementary example of analogous physical problems:

> the metric outside a rotating spherical mass (which is
asymptotically described by the Kerr solution);

> the electromagnetic field produced by a rotating charged
sphere (in Minkowski spacetime).




Spinning Charge vs Spinning Mass
Far field limit r — oo; observer at rest with respect to the center of
the spheres.

» Spinning Charge — Electromagnetic tidal tensors

.2
E,sdx®dx® = T a2 + T4q,
r3 r

Bagdxdx® = 1 3/0s" (sz e il erde)
2m  r r r

» Spinning Mass — Gravitational tidal tensors

. 2
Eaﬁdxadx*‘g ~ —r—,:er + ?ng

Hodx@dx? ~ 32 cosf (dQ . —d 2 2tan9drd9>
r

r

> ldentifying m < g : electric tidal tensors asymptotically
match; magnetic tidal tensors match up to a factor of 2.



Linearized gravitational perturbations

The matching occurs because far from the source, the
non-linearities of the gravitational field are negligible. These results
are a special case of a more general principle.

» Consider arbitrary stationary gravitational perturbations:
ds? = — (1 — 20) dt* — 4 A;dtdx + (& + Oj) dx'dx!
and an arbitrary electromagnetic field in Minkowski spacetime:

A% = (¢, A);  ds? = —dt® + gjdx’dx



Linearized gravitational perturbations

The matching occurs because far from the source, the
non-linearities of the gravitational field are negligible. These results
are a special case of a more general principle.

» Consider arbitrary stationary gravitational perturbations:
ds? = — (1 — 20) dt* — 4A;dtdx! + (& + ©;) dx'dx/
and an arbitrary electromagnetic field in Minkowski spacetime:

AY = (¢, A);  ds? = —dt? + gjdx dx/

> For a static observer U = 43, the linearized gravitational
tidal tensors are the same, identifying (¢, A') « (¥, A'), as
the electromagnetic ones:

Ej ~ —b;bj¢ = E;, Hj=~ €;/ijDlAk = Bj

(D denotes covariant derivative with respect to g;;)



Linearized gravitational perturbations

» For a static observer, gravity would seem consisting of an
electric field Eg = —V ¢ and a magnetic field B =V x A.

» Test particles will move on geodesics described (to first order
in the velocity) by an equation analogous to Lorentz force law:

» and a gyroscope will precess like a magnetic dipole under a
torque 7 = S x é(; — which is the Lense-Thirring Effect,
measured to a 10% accuracy by Ciufolini-Pavlis analysis of
LAGEOS data, and subject of experimental scrutiny by
NASA /Stanford Gravity Probe B and the upcoming LARES
missions.



Linearized gravitational perturbations

» However, when the fields are not stationary in the observer’s
rest frame — that is the case of a non-stationary metric, or an
observer moving in a stationary metric — the GR tidal tensors
are very different from the EM ones, so that the physical
analogy (¢, A’) « (¢, A’) no longer holds.



Linearized gravitational perturbations

» Time-dep. setups, and observer with 4-velocity U* = (u°, u’)

Eow = (¢i+A)d
Eoi = ($ui + Ai)u¥
Eio = —(¢i+ AN+ 24,

Eoo

12

- (¢:ji + 24 + @U> u'e

Eoi =Ejp ~ (Cb;ij + 2/1(,-;1) + éij) O 42 ((;)j[,-;k] - A[k;i]j) i
Ej=E; ~ 2 <9k(;;j) — G,-J-;k + Ay — A(i;j)k) 20Uk

+ (2@,(;;j)kukul — Ok — @/k;ij) uku!

— (@ + 24y + 65) (4"



Linearized gravitational perturbations

» Time-dep. setups, and observer with 4-velocity U* = (u°, u’)

Boi = —gljkAj;l;i”k

Bio Ei AU + & (GBJ + Aj) uk

Bj = @,-lmAm;Ij“0 + Elik (¢Ij + Al:j) u*
Hoo =~ €imn (An;n?j T ejn;m) u't/
Hp ~ &% — Ay O =&, (o 4245 + O ) vk

0o = Jkl kilj | u €ik ! + () T Oy ) utu

Hoi =~ & . ( ikl — Ak;/i) o — 6J'lm (Oitkiitm + Crmiskr) wu*
Hy ~ &% (Ak,JJr@,k /)( °)’



Linearized gravitational perturbations

Relative acceleration of two particles (initially) at rest:

Electromagnetism Gravity

D?5x! q : D%5x! .

W == ;EU(;XJ 7d7—2 = *EU(SXJ
L NP RS — (. Lo O §xd
= m(gb;u + A,;J)5X = CD;,J + 2./4(,;1) + @,_, dx

= 9 oxi
m
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Linearized gravitational perturbations




Linearized gravitational perturbations

—

d2x DA L0, 200

F:v¢+2ﬁ_2VXVXA_EV_ ot

2=

EM Lorentz Force: 2 =-Vob - 8—A TV XVxA
dt? ot



Linearized gravitational perturbations

(@)
°

darr

Force on dipole: Fgy = iV(é.?)
2m



Linearized gravitational perturbations

Force on dipole: Fgy = iV(é.?)
2m



Linearized gravitational perturbations
;

d’x \
F; :(1<E+17>< B)




Ultra-stationary spacetimes

Ultra-stationary spacetimes are a special class of stationary
spacetimes whose metric has a constant ggg component in the
chart where it is explicitly time independent.



Ultra-stationary spacetimes

The line element is, generically:
2 Ky i) K\ i i
ds® = — (dt + Ai(x )dx’> + &ij(x")dx"dx’

In these spacetimes (Herdeiro & Gibbons, 1999), the Klein-Gordon
equation:

OV = mV,
with the ansatz W = e~ /Et4)(x/), reduces to a time independent
Schrédinger equation: Hy = ey, where

(P + EA)? E2 — m?

H: p—
¢ 2m

)

2m



Ultra-stationary spacetimes

The line element is, generically:
2 Ky i) K\ i i
ds® = — (dt + Ai(x )dx’> + &ij(x")dx"dx’

In these spacetimes (Herdeiro & Gibbons, 1999), the Klein-Gordon
equation:

OV = mV,
with the ansatz W = e~ /Et4)(x/), reduces to a time independent
Schrédinger equation: Hy = ey, where

(P + EA)? E? — m?

H: =
¢ 2m

)

2m

» This is the non-relativistic problem of a particle with “charge”
—E and mass m, living in a curved 3-space with metric gj;,
under the action of a magnetic field B =V x A.



Ultra-stationary spacetimes

The covariant derivative of the magnetic field B turns out to be, up
to the usual factor of 2, the same as the exact gravito-magnetic
tidal tensor!

DiB; = Bj = &,miD; D' A™ = 2H;

(D denotes covariant derivatives with respect to g;)

» This is a highly non-trivial realization of the analogy, since
there is an exact matching between tidal tensors from a linear
theory (electromagnetism) with the ones from a non-linear
theory (gravity);

» Provides valuable insight for the understanding of some
properties of these spacetimes.



Ultra-stationary spacetimes - The Godel Universe

“Einstein told me, that Godel’s papers were the most important
ones on relativity since his own original paper appeared’ (Oskar
Morgenstern, 1972)

The Godel Universe is an exact solution of Einstein’s equations for
the case of a homogeneous universe filled with a perfect,
pressureless, rotating fluid.



Ultra-stationary spacetimes - The Godel Universe

» Portrayed in literature as a homogeneous rotating universe - a
conceptually hard definition since it means that it rotates
around every point (eg. Ciufolini, 1995);

» The vanishing magnetic part of the Weyl tensor has also led to
some conceptual difficulties:

» “The Godel metric, as with the Davidson metric, is a
counterexample to the hypothesis that rotation is the source of
the magnetic part of the Weyl tensor.” (C. Lozanovski, C.B.G.
Mclntosh, 1999)

> “the gravito-magnetic field H,p, has the source (p + p)wa,
which we identify as a gravito-magnetic ‘charge’ density. Note,
however, that angular momentum density does not always
generate a gravito-magnetic field. The Godel solution provides
a counter-example (Roy Maartens, Bruce A. Basset, 1998)



Ultra-stationary spacetimes - The Godel Universe

Within the analogy proposed herein, both these facts have a
straightforward interpretation. The line element is given by:

ds? = — (dt + A, dy)? + g;dx'dx/

with:
Ay:e‘/i“’x
1 0 0
Gl = | 0 eV 0
0 0 1



Ultra-stationary spacetimes - The Godel Universe

The Klein-Gordon equation maps this metric into the magnetic field
B = 2wé, living in the three-space of metric:

1 0 0
il = | 0 1eV2* 0
0 0 1

> Bjj = ﬁjB,- = 0 = the magnetic field is uniform in this 3-space

» thus, the physical interpretation for the vanishing of the
magnetic part H, s of the Riemann (and hence Weyl) tensor is
that these tensors are magnetic tidal tensors, and hence they
must vanish since the Godel universe has a uniform
gravitomagnetic field.



Ultra-stationary spacetimes - The Godel Universe

» The concept of homogeneous rotation is then easily
assimilated by an analogy with the more familiar picture of a
gas of charged particles subject to a uniform magnetic field:
there are Larmor orbits around any point.
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Magnetic dipole vs Gyroscope

Electromagnetic Force Gravitational Force
on a Magnetic Dipole on a Spinning Particle
B q / ] ,
Fiy = ﬂB(”?Sa Fg = -H*’S,

The explicit analogy between F,’?M and Fg is ideally suited to:
» Compare the two interactions: amounts to compare B,z and
H,s, which is crystal clear from the equations for gravitational
and electromagnetic tidal tensors;

» Visualize, in analogy with the more familiar electromagnetic
ones, gravitational effects which are not transparent in the
Papapetrou’s original form.



Magnetic dipole vs Gyroscope

Electromagnetic Force Gravitational Force
on a Magnetic Dipole on a Spinning Particle
B q / ] ,
Fiy = ﬂB(”?Sa Fg = -H*’S,

Example: non-geodesic motion of a gyroscope (even) in the
absence of rotating sources (e.g. Schwarzschild spacetime) — an
effect readily visualized with the help of the explicit analogy:
> it is the magnetic tidal tensor as seen by the dipole/gyroscope
what determines the force exerted upon it;

» thus, a gyroscope (in non-radial motion) deviates from
geodesic motion in Schwarzschild spacetime by the same
reason that a magnetic dipole will suffer a force even in the
coulomb field of a point charge: in its “rest” frame, there is a
non-vanishing magnetic tidal tensor.



Magnetic dipole vs Gyroscope

» An effect not explained in the first order estimate derived in
the framework of the gravito-electromagnetic analogy known
from linearized theory (e.g. Wald, 1972; Harris, 1991):

—

Fe =-V(S - Bq)
similar to the 3-D non-covariant form for the electromagnetic
force on a dipole:

Fem = V(i7.B)

> as is clear in the tidal tensor formalism, such expression can be
valid only if the gyroscope is at rest in a stationary, besides
weak, gravitational field = therefore not suited to describe
motion.



Magnetic dipole vs Gyroscope

» An effect not explained in the first order estimate derived in
the framework of the gravito-electromagnetic analogy known
from linearized theory (e.g. Wald, 1972; Harris, 1991):

, N
_ . Y ik 2.
Fo = —V(S-Bo)t, (e gb7k) Sié;

similar to the 3-D non-covariant form for the electromagnetic
force on a dipole:

Fem = V(i7.B)

> as is clear in the tidal tensor formalism, such expression can be
valid only if the gyroscope is at rest in a stationary, besides
weak, gravitational field = therefore not suited to describe
motion.



Magnetic dipole vs Gyroscope

» An effect not explained in the first order estimate derived in
the framework of the gravito-electromagnetic analogy known
from linearized theory (e.g. Wald, 1972; Harris, 1991):

—

Fe =-V(S - Bq)
similar to the 3-D non-covariant form for the electromagnetic
force on a dipole:

Fem = V(i7.B)

» accounts only for the coupling between the spin of the source
and the spin of the gyroscope, hiding the fact that a force acts
on the gyroscope even in the absence of rotating sources (for
example, in Schwarzschild spacetime).



Magnetic dipole vs Gyroscope

» An effect not explained in the first order estimate derived in
the framework of the gravito-electromagnetic analogy known
from linearized theory (e.g. Wald, 1972; Harris, 1991):

—

Fe =—V(S-Bg)

similar to the 3-D non-covariant form for the electromagnetic
force on a dipole:

Fem = V(i7.B)

» Important pysical content lost in these 3-D expressions is
unveiled by the time components of F2;, and F&.



Time projection of Fg;, in the dipole’s proper frame:

o dm
FEMU == —E

» m = P*l, = proper mass of the test particle



Time projection of Fg;, in the dipole’s proper frame:

dm_@é_,

Fe U, =21 95
EmU ar ot M

» The magnetic dipole may be thought as a small current loop.

(Area of the loop
A = 47a%; | = current through the loop, ii =unit vector normal to the loop)

» The magnetic dipole moment is given by i = IAR



Time projection of Fg;, in the dipole’s proper frame:

dm 0B 0B AI_(?LD

FemUa = =g = 5= 37 ot

» The magnetic dipole may be thought as a small current loop.

‘ (Area of the loop
A = 4ra’; I = current through the loop, A =unit vector normal to the loop)

» BAR = ® = magnetic flux trough the loop



Therefore, by Faraday s law of induction:

dm 8B 0B a0 .
T — Pi=_1¢ Ed
FemU g~ o= oA = 9%,0,, y

= Induced electric field

» Hence Fg,,Uy, = —dm/d7 is minus the power transferred to
the dipole by Faraday’s law of induction.



Time Projection of F¢ — no gravitational induction

Since H,3 is a spatial tensor, we always have

dm

Fey, = -2 —
G dr

0
» No work is done by induction = the proper mass of the
gyroscope is constant.

» Spatial character of gravitational tidal tensors precludes
induction effects analogous to the electromagnetic ones.



Time Projection of F¢ — no gravitational induction

Example: A mass loop subject to the time-varying “gravitomagnetic
field” of a moving Kerr Black Hole

-}




Time Projection of F¢ — no gravitational induction
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Time Projection of F¢ — no gravitational induction

Example: A mass loop subject to the time-varying “gravitomagnetic
field” of a moving Kerr Black Hole

©, In the loop s rest frame:
T -No work done on the loop

-No extra current induced




Time components on arbitrary frames

» Electromagnetism:

In an arbitrary frame, in which the dipole has 4-velocity

UP = ~(1, V), the time component of the force exerted on a
magnetic dipole is:

~ DE_Fl,Us _.  (ldm
(FEM)O = —;—T—FE,\/IV,—— ;E—FFEMV,
= —(Pmech + Pind)

where E = —P; is the energy of the dipole and we identify:

1dm
» Ping = 5%

» Prech = F/_;Mv,- “mechanical”’ power transferred to the dipole
by the 3-force Fg,, exerted upon it.

= —FgMUﬁ/y = induced power



Time components on arbitrary frames

» Gravity:
Since FEU, = —dm/dT = 0, we have

DE :
(FG)O = _F = —F'GVi



Static Observers — Electromagnetism

» When the fields are stationary in the observer’s rest frame,
(Fem)o = 0 = no work is done on the magnetic dipole.
» Related to a basic principle from electromagnetism: the total

amount of work done by a static magnetic field on an
arbitrary system of currents is zero.
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» When the fields are stationary in the observer’s rest frame,
(Fem)o = 0 = no work is done on the magnetic dipole.
> Prech and Ping exactly cancel out

N\ /1duced current
)

¢




Static Observers — Electromagnetism

» When the fields are stationary in the observer’s rest frame,
(Fem)o = 0 = no work is done on the magnetic dipole.
» Prech and Ping exactly cancel out.

® Induced current
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Static Observers — Gravity

» In gravity, since those induction effects are absent, such
cancellation does not occur:

DE :
(FG)OZ—F:—FIGW?&O

» Therefore, the stationary observer must measure a non-zero
work done on the gyroscope.

» That is to say, a static “gravitomagnetic field” (unlike its
electromagnetic counterpart) does work.

» And there is a known consequence of this fact: the spin
dependent upper bound for the energy released when two black
holes collide, obtained by Hawking (1971) from the area law.

» For the case with spins aligned, from Hawking's expression one
can infer a gravitational spin-spin interaction energy (Wald,
1972).



Static Observers — Gravitational spin interaction

Take the gyroscope to be a small Kerr black hole of spin
S = /525, falling along the symmetry axis of a larger Kerr black
hole of mass m and angular momentum J = am.
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Static Observers — Gravitational spin interaction

Take the gyroscope to be a small Kerr black hole of spin
S = /525, falling along the symmetry axis of a larger Kerr black
hole of mass m and angular momentum J = am.

Gravitational Radiation

VVVVVVVA




Static Observers — Gravitational spin interaction

Take the gyroscope to be a small Kerr black hole of spin
S = /525, falling along the symmetry axis of a larger Kerr black
hole of mass m and angular momentum J = am.

» The time component of the force acting on the small black
hole is given by:

DPg dE. 2ma(3r2—2a%)U'S
(Feo=p - =—y- =~ 2 . 23
T T (r* 4 a2)

Integrating this equation from infinity to the horizon one

obtains
™+ as
/ (Fg)0 =AE = ,
oo 2m |m+ vVm? — a2

which is precisely Hawking's spin-spin interaction energy for
this particular setup.



Electromagnetism

Worldline deviation:
D25x“

Gravity

Geodesic deviation:
D25 x>

q
D2 = mb
Force on magnetic dipole:
DP?P q
= - B*s
Dt 2m ¢

_ B
Dz T e
Force on gyroscope:

DPS
— = -H*§
Dt ¢

Blag) =

Maxwell Equations:

E%, = 47rpc
Ejap) = 5Fapy U”
Ba:O

% * Fogiry uP — 2meagar )’ U7

Egs. Grav. Tidal Tensors:
E%, = 47 (20m + T%)

Ejag =0
H®, =0
H[aﬂ] = —471'601/307./0 U7




Conclusions

» The tidal tensor formalism makes transparent both the
similarities and key differences between the gravitational and
electromagnetic interactions.

> At the same time it unveils a new physical analogy between
General relativity and electromagnetism, based on exact,
covariant, and fully general equations.

» The non-geodesic motion of a spinning test particle not only
can be easily understood, but also exactly described, by a
simple application of the analogy based on tidal tensors.

» An unification within gravito-electromagnetism was also
achieved: the (exact) connection between ultra-stationary
spacetimes and magnetic fields in some curved manifolds was
seen to originate from the same fundamental principle as the
analogy from linearized theory: a matching between tidal
tensors.



> Issues concerning previous approaches in literature were
clarified — namely, the limit of validity of the usual linear
approach to gravitoelectromagnetism, and the physical
interpretation of the magnetic parts of the Riemann/Weyl
tensors.
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