LAGEOS based Earth system parameter determination and GRACE

Rolf Koenig, Margarita Vei, Frank Flechtner, Christoph Foerste

Content

- LAGEOS-1/-2
 - Motivation
 - Atmosphere and Ocean Dealiasing
 - Reference frame solution
 - Earth's oblateness or C₂₀

• GRACE and the EIGEN Gravity Field Models

- EIGEN-GRACE0xS
- EIGEN combinations
- Impact of GOCE
- Conclusions

LAGEOS-1 / -2

- NASA / NASA/ASI mission
- LAGEOS = Laser GEOdynamics
 Satellite
- GFZ is ILRS Analysis Center
- Mission parameters:
 - Launch 04-MAY-1976 / 22-OCT-1992
 - Altitude 5,900 km
 - Inclination 109.8° / 52.6°
 - Nearly circular
 - Lifetime 50 years nominal

Original Motivation to do LAGEOS

- GFZ's position and EOP solutions from LAGEOS-1/-2
 - > AC contribution to ILRS pos&eop daily and weekly products
 - > ILRS intra-technique combination
 - > inter-technique combination for ITRF2008
 - > re-processing done for the period since 1983
- Adopt up-to-date GRACE standards (..., AOD, ...)
- Solve for the low degree harmonics
 - Direct comparison with GRACE results
 - Rigorous combination with GRACE
 - Long-term meteorological/hydrological analysis
 - Long-term background model analysis
 - Reference frame analysis

Models and Data

- 15-d arcs from LAGEOS-1 for JAN 1983 to DEC 1992
- Weekly arcs from LAGEOS-1 and -2 for JAN 1993 to DEC 2006
- GRACE RL04 standards
 - EIGEN-GL04C
 - AOD1B
 - Ocean tides FES2004
 - Atmospheric tides Bode&Biancale2003
 - Ocean tide loading (Bos&Scherneck web site)
- Parameters (1m a priori σ)
 - Station coordinates and velocities per 15-d / 7-d
 - EOPs (polar motion, LOD) per 1-d
 - Global gravity field coefficients degree 0 10
 - Selected ocean tide waves
 - Geocenter bias per 1-a, 1/a, 2/a

Atmosphere and Ocean Dealiasing

- AOD products cover the non-tidal atmospheric and oceanic mass variations
- Invented for GRACE, available now back to 1976 from

http://isdc.gfz-potsdam.de

- 1976 to 2001 OMCT based on ERA-40 (ECMWF reanalysis over 40 a)
- 2001 to date OMCT based on ECMWF operational data

Atmosphere and Ocean Dealiasing

• Impact on LAGEOS derived C₂₀

Reference Frame Solution

- Orbital fit
 - Overall RMS 1.1 cm for 1,731,008 observations since 1993

Reference Frame Solution

- Scale vs. SLRF2005
 - Overall RMS 2.2 ppb

Reference Frame Solution

- Translation vs. SLRF2005
 - Overall RMS 1.6 / 1.8 / 3.1 cm in X, Y, Z

Earth Oblateness C₂₀

• Bias between LAGEOS and GRACE

GRACE

- NASA/DLR gravity mission
- GRACE = Gravity Recovery And Climate Experiment
- GFZ is part of the SDS (Science Data System)
- Mission parameters:
 - Launch 17-MAR-2002
 - Altitude 500 km
 - Inclination 89.0°
 - Nearly circular
 - Lifetime 5 years nominal

Evolution of GFZ's EIGEN-GRACE0xS Series

- EIGEN = European Improved Gravity field of the Earth by New techniques
 - 0x = solution number
 - S = Satellite-only solutions
- Statistics:

Mean

EIGEN-GRACE01S39 daysEIGEN-GRACE02S110 daysEIGEN-GRACE03S376 daysEIGEN-GRACE04S430 daysEIGEN-GRACE05S4 years

Time-variable (monthly/weekly sol.)

9 (04/2002-11/2003) / none 16 (02/2003-07/2004) / none 46 (02/2003-12/2006) / none 73 (08/2002-03/2009) / 281

Evolution of GFZ's EIGEN-GRACE0xS Series

• Statistics cont'd

	Arc length [d]	AOD1B	GPS-Amb. Ground
EIGEN-GRACE01S EIGEN-GRACE02S	1.5 1.5	ECMWF, PPHA ECMWF, PPHA	real real
EIGEN-GRACE03S EIGEN-GRACE04S EIGEN-GRACE05S	1.5 1.0 1.0	ECMWF, PPHA ECMWF, OMCT ECMWF, OMCT	integer integer

EIGEN-GRACE0xS

Accumulated Error

ASSOCIATION

• Gain in spectral accuracy

Degree Variances

EIGEN-GRACE0xS

- Further planning towards EIGEN-GRACE06S
 - Improved pre-processing of level-1B data (less loss of data, ...)
 - Improved GPS constellation (absolute phase center corrections, phase wind-up, shadow crossing, noon-turns, attitude model, ...)
 - Improved GPS antennae phase corrections masks
 - Shorter GRACE arc length (6h)
 - EIGEN05C as background model
 - Improved ocean tide model EOT08a: empirical corrections to FES2004
 - Usage of trend of annual and semi-annual variations derived from EIGEN-GRACE05S

-

EIGEN-GRACE06S

- Improved pre-processing of level-1B data
 - Large impact at low degrees
 - Errors improve towards baseline

EIGEN Combinations

- Outcome of a long-time cooperation between GFZ and GRGS Toulouse
- Spherical harmonic coefficients up to degree/order 360 (~50 km resolution)
- Satellite data:
 - Evaluation of satellite orbit perturbations (SLR from ground, GPS on-board)
 - Inter-satellite range and range-rate observations
 - Gradiometry
- Surface data:
 - Ground gravity measurements (land, ship, airborne)
 - Geoid height measurements (satellite altimetry)
- Combination of satellite data and satellite and surface data on the normal equation level

EIGEN Combinations

• EIGEN-GL04C (2006)

- GL = GRACE + LAGEOS
- 0x = solution number
- C = Combination
- EIGEN-5C (= EIGEN-GL05C) (2008)

	EIGEN-GL04C	EIGEN-5C	
LAGEOS	24 months 2/2003 - 2/2005	72 months 01/2001 - 12/2006	
GRACE	30 months 2/2003 - 7/2005	54 months 8/2002 - 1/2007	
Surface	 Various gravity anomaly sets for the continents and the North Polar region, 30'x30'. Altimetry geoid undulations over the oceans, 2'x2' 		

EIGEN Improvement

• From EIGEN-GL04 to EIGEN-5

ASSOCIATION

EIGEN-GL

• Impact of LAGEOS

Degree variances EIGEN-G04C (without LAGEOS) vs. EIGEN-GL04C

GOCE

- ESA gravity mission
- GOCE = Gravity field and steadystate Ocean Circulation Explorer
- GFZ is part of the HPF (High level Processing Facility)
- Mission parameters:
 - Launch 17-MAR-2009
 - Altitude 270 km
 - Inclination 96.5° (sun-synchronous)
 - Nearly circular
 - Lifetime 18 months

Impact of GOCE

Conclusions

- LAGEOS data since 1983 have been processed with GRACE RL04 standards, measurement model according ILRS AWG
 - 25 year long reference frame solution for geocenter and scale
- EIGEN GRACE-only gravity models
 - Improvements towards baseline scheduled with RL06 (also $C_{_{\gamma\gamma}}$)
 - Better de-correlation of the lower degrees
- EIGEN combination models
 - LAGEOS impact on degrees 2 to 4
 - Probably not much to expected from GOCE to the lower degrees

Acknowledgement

ILRS for providing SLR observations and SLRF2005, IERS for a priori values for EOPs, IGS for providing GPS ground observations

