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NEWTONIAN (1687/KEPLER (1619) 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GENERAL RELATIVITY:  1‐BODY/NO SPIN 

Einstein field equations
         
Schwarzschild solution
         Post-Newtonian Approx.
         (one order beyond Newton)
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Perihelion Precession (of     )
DEF:
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MERCURY−SUN →     ≈ 3× 3×10−8( ) 8.3×10−7( )rads / s = 43”/CENTURY
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2. GENERAL RELATIVISTIC CORRECTIONS 

DEF:  
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a = Semi−Major Axis;  e = Eccentricity
M = m1 + m2

µ =
m1m2

M
 
L = L n ( n = ˆ L ) = Angular Momentum
 
A = Runge−Lenz Vector
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αg
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GM
c2a

= Gravitational Coupling Constant =
ω a( )2

c2 =
vav
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a2 1− e2( )
1/2 = Average Orbital Angular Velocity

     (T = Period) 
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ALL precessions per unit time    ~ αgω 

(a) Periastron precession (Robertson/EIH)
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(b) Spin Precession (Barker-O’Connell)
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GENERAL CHECKS 

1.

Hence
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A ,  as is required
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GENERAL CHECKS 

2.

Conservation of total momentum  
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Science 321, 104 (July 4, 1008) 

Relativistic Spin Precession in the Double Pulsar
Breton et al., 
measure the relativistic precession of pulsar B’s 

spin axis
               4.77º/yr observed
               5.07º/yr theory  [4º.78 for A]

PERIODS      71 yrs               75 yrs
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↓
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B. M. Barker and R. F. O’Connell, Phys. Rev. D 12, 
329 (1975) 

               “predicted by general relativity”
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Figure 1:  Schematic view of the double pulsar system showing 
the important parameters for the modeling of pulsar A's eclipse 
(dimensions and angles are not to scale).  Pulsar B is located at 
the origin of the cartsian coordinate system, whereas the 
projected orbital motion of pulsar A during its eclipse is 
parallel to the y axis at a constant z0 as seen from Earth, which 
is located toward the positive x axis.  Because the orbital 
inclination is almost perfectly edge-on (14), we can 
approximate the z axis to be coincident with the orbital angular 
momentum.  The spin axis of pulsar B, whose spatial 
orientation is described by    and   , is represented by the  
vector.  The magnetic axis of pulsar B corresponds to the  
vector and makes an angle with respect to     .  Lastly, the 
absorbing region of the diplar magnetosphere of pulsar B, 
truncated at radius           , is shown as a shaded red region.
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10.  DOUBLE PULSAR SYSTEM: THE WORKS 

Science 303, 1143 (Feb. 20, 2004)
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A is ≈ 3,600 times 
as energetic as B!! 



Two-Pulsar dance.  Schematic of the double pulsar system (not to scale) relative to observers on 
Earth.  The ellipses are the orbits of the two pulsars A and B around the common center of gravity 
seen at an oblique angle.
Pulsar A’s strong outflow of relativistic particles and magnetic fields (“pulsar wind”)penetrates into 
the light cylinder of star B and causes formation of a bow shock with long tail behind pulsar B.  
The light cylinder (with radius    ) plays an essential role in the generation of the radio beams that 
cause the observed pulsed signal.
The beam of pulsar B is depicted here as a hollow cone centered on the magnetic pipole axis.  The 
distruption of pulsar B’s light cylinder on the side facing pulsar A may short-circuit the currents in 
B’s magnetosphere that produce the radio beams, which might explain the weakness of the pulses 
of B observed over most of its orbital cycle.
Changes in orientation of the light cylinder will cause variations in the emitted beam, as will 
relativistic precession of the rotation axis.

                        co-rotation of charged particles in magnetosphere cannot persist beyond
                        the surface where the tangential velocity = c
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4.  DOUBLE BINARY NUMBERS 

Distance to Earth

Number of Pulsars  ≈1,700
                                     only 3 in nearby galaxies
Binary with 1 Pulsar and 1 Neutron star    6
Double Pulsar   1      (Very Unique!)
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  Milky Way Diameter
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→
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a = Semi - Major Axis =1.25RΘ = 8.7×105km
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⇒ Entire Binary could fit within our Sun
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RΘ ≈ 7×102km
n−Star Radius =10km

           ≈10−5RΘ€ 

2.2×1016miles
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e = Eccentricity = 0.088
i = Angle of Inclination = 88.69º
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⇒ System is observed nearly perfectly edge - on
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T = Orbital Period = 2.45 Hours
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Periastron Precession dω
dt

 
 
 

 
 
 =16.89949(68) / Year ≈ (43,000) PP of Hg
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≈ m1 +m2 = 2.58708(16)→ High Accuracy
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Spin Precession

€ 

→ need separate values for m1 and m2

€ 

→
m1
m2

is obtainable from a1 =
m2
M

a and a2 =
m1
M
a

          and the measured projected semi - major values a1sin i
c

 
 
 

 
 
  and a2 sin i
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→m1 and m2from Shapiro Time Delay [delay of 6.2µs due to A]
           → 13% Accuracy with improvements very likely
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EMISSION

          B ≈108G −1010G
         ⇒ Radio Emission

€ 

BIRTH
          Supernova Explosions of Stars
         ≈ (16 -18)MΘ  [(4 −10)MΘ  for solitary pulsars]



TABLE COMPARING VARIOUS SYSTEMS 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 where M = m1 +m2;  a = Semi Major Axis

ω = 2π
T
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 where T =  Orbital Period

1º / yr = 3 ⋅6×102( ) arc - sec/yr

1 rad/sec = 1⋅8×109( )
0

/yr = 6 ⋅5×1012( ) arc - sec/yr
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OBSERVATIONS  

24 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1mas = 2 ⋅8×10−7( )º[ ]
i) Single Pulsar       Stairs, et al., PRL 93, 141101 (’04)/                (95% confidence)/2-Body

ii) Lense-Thirring effect on 2 lageos satellites [spin (earth)-earth orbit]
    Sattellite-Laser-Ranging (precession     few mms.)      Ciufolini and Paulis, 
    Nature 431, 958 (’04)/ 31                   mas/yr / Nodal (orbital) Motion of satellite

iii) Lunar Laser Ranging [Spin (earth-moon)-Sun orbit]
              JPL etc., PRL 98, 071102 (’07) 
              0.1% Accuracy/Nodal motion of moon

iv) Double Pulsar       Breton et al., Science 321, 104 (2008)
                                    5.07%/yr (13% precision) [Agrees with B-O’C, PRD 12, 329 (’75)]

v) Gravity Probe B       gyro orbiting earth
                                      NASA Final Report, Dec. 2008
    Spin-Orbit (Geodesic)                                                        
    Spin-Spin (Frame Dragging)                          (error 15%) [170 times smaller]
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→ 6,614 ⋅4mas /year (error 0 ⋅5%)
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→ 39mas/year


