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The Approach Based on Tidal Tensors � Motivation

Propose a new approach based on general, exact, and covariant
equations, with which we aim to:

I Clarify the relationship between the various
gravito-electromagnetic analogies found in literature, as well as
issues within each of them;

I Search for the underlying principle behind the physical analogy
between linearized Gravity and Electromagnetism;

I Introduce a new formalism allowing for a transparent
comparison between the two interactions, and to study the
physical similarities between them at a more fundamental level.



The Approach Based on Tidal Tensors � Guiding Principle

I A transparent comparison between the electromagnetic and
gravitational interactions must be based on quantities common
to both theories;

I the electromagnetic interaction is based on forces;

I but gravity is pure geometry, the only physical, covariant forces
are tidal forces (tidal forces are the true signature of gravity!)

I Therefore: tidal forces should be the starting point for our
approach.



Electric-type Tidal Tensors

Tidal forces are described in an invariant way through the wordline
deviation equations:

which yield the acceleration of the vector δxα connecting two
particles with the same (Ciufolini, 1986) 4-velocity Uα � and the
same q/m ratio in the electromagnetic case.
(Notation: Fαβ ≡ Maxwell tensor, Rαβγσ ≡ Riemann tensor)



Electric-type Tidal Tensors

Tidal forces are described in an invariant way through the wordline
deviation equations:

I Suggests the physical analogy: Eαβ ←→ Eαβ
I Eαβ is the covariant derivative of the electric �eld

Eα = FαµUµ measured by the observer with (�xed) 4-velocity
Uα;



Electric-type Tidal Tensors

Tidal forces are described in an invariant way through the wordline
deviation equations:

I Suggests the physical analogy: Eαβ ←→ Eαβ
I Hence:

I Eαβ ≡ electric tidal tensor; Eαβ ≡ gravito-electric tidal tensor.



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal e�ects:

Notation: ? ≡ Hodge dual; Sα ≡ spin 4-vector.

I Suggests the physical analogy: Bαβ ←→ Hαβ



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal e�ects:

I Bαβ measures the tidal e�ects produced by the magnetic �eld
Bα = ?FαµUµ seen by the observer of 4-velocity Uα.



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal e�ects:

I Hence: Bαβ ≡ magnetic tidal tensor; Hαβ ≡ gravito-magnetic

tidal tensor.



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal e�ects:

I σ = µ/S ≡ gyromagnetic ratio ⇒ equals 1 for gravity
⇒ ~µ↔ ~S



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal e�ects:

I Relative minus sign: mass/charges of the same sign
attract/repel one another ⇒ antiparallel charge/mass currents
repel/attract.



Maxwell's Equations: Tidal tensors and sources

I Maxwell's equations may be cast, in an explicitly covariant
form, as equations for tidal tensors and sources:



Maxwell's Equations: Tidal tensors and sources

Maxwell Equations

Tidal tensor form Non-covariant form

Eαα = 4πρc ∇.~E = 4πρc

Bαα = 0 ∇.~B = 0

E[αβ] = 1
2Fαβ;γU

γ ∇× ~E = −∂
~B

∂t

B[αβ] = 1
2 ? Fαβ;γU

β − 2πεαβσγ j
σUγ ∇× ~B =

∂~E

∂t
+ 4π~j

( jα ≡ Charge current 4-vector; ρc = −jαUα ≡ charge density � as measured
by the observer with 4-velocity Uα )



Maxwell's Equations: Tidal tensors and sources

Maxwell Equations

Tidal tensor form Non-covariant form

Eαα = 4πρc ∇.~E = 4πρc

Bαα = 0 ∇.~B = 0

E[αβ] = 1
2Fαβ;γU

γ ∇× ~E = −∂
~B

∂t

B[αβ] = 1
2 ? Fαβ;γU

β − 2πεαβσγ j
σUγ ∇× ~B =

∂~E

∂t
+ 4π~j

I Decomposing: Fαβ;γ = 2U[αEβ]γ + εαβµσB
µ
γU

σ , we see that
Maxwell's equations indeed involve only tidal tensors and
sources.



The Gravitational analogue of Maxwell's Equations

By performing, on the gravitational tidal tensors, the same
operations that led to Maxwell's equations, i.e, taking the traces
and antisymmetric parts, we obtain the analogous set of equations:



The Gravitational analogue of Maxwell's Equations

Electromagnetism Gravity

Maxwell Equations Eqs. Grav. Tidal Tensors

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

Bαα = 0 Hα
α = 0

E[αβ] = 1
2Fαβ;γU

γ E[αβ] = 0

B[αβ] = 1
2 ? Fαβ;γU

β − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

I Strikingly similar when the setups are stationary in the
observer's rest frame. Otherwise, tell us that gravitational and
electromagnetic interactions di�er signi�cantly, since the tidal
tensors do not have the same symmetries.



The Gravitational analogue of Maxwell's Equations

Electromagnetism Gravity

Maxwell Equations Eqs. Grav. Tidal Tensors

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

Bαα = 0 Hα
α = 0

E[αβ] = 1
2Fαβ;γU

γ E[αβ] = 0

B[αβ] = 1
2 ? Fαβ;γU

β − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

I Charges: the gravitational analogue of ρc is 2ρm + Tα
α

(ρm + 3p for a perfect �uid) ⇒ in gravity, pressure and all
material stresses contribute as sources.



The Gravitational analogue of Maxwell's Equations

Electromagnetism Gravity

Maxwell Equations Eqs. Grav. Tidal Tensors

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

Bαα = 0 Hα
α = 0

E[αβ] = 1
2Fαβ;γU

γ E[αβ] = 0

B[αβ] = 1
2 ? Fαβ;γU

β − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

I Ampére law: in stationary (in the observer's rest frame)
setups, equations B[αβ] and H[αβ] match up to a factor of 2 ⇒
currents of mass/energy source gravitomagnetism like currents
of charge source magnetism.



The Gravitational analogue of Maxwell's Equations

Electromagnetism Gravity

Maxwell Equations Eqs. Grav. Tidal Tensors

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

Bαα = 0 Hα
α = 0

E[αβ] = 1
2Fαβ;γU

γ E[αβ] = 0

B[αβ] = 1
2 ? Fαβ;γU

β − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

I Absence of electromagnetic-like induction e�ects in gravity:

I Eµγ always symmetric ⇒ no gravitational analogue to
Faraday's law of induction!



The Gravitational analogue of Maxwell's Equations

Electromagnetism Gravity

Maxwell Equations Eqs. Grav. Tidal Tensors

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

Bαα = 0 Hα
α = 0

E[αβ] = 1
2Fαβ;γU

γ E[αβ] = 0

B[αβ] = 1
2 ? Fαβ;γU

β − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

I Absence of electromagnetic-like induction e�ects in gravity:

I Induction term ?Fαβ;γU
γ in B[αβ] has no counterpart in H[αβ]

⇒ no gravitational analogue to the magnetic �elds induced by
time varying electric �elds.



Electromagnetism Gravity

Maxwell Field Equations Einstein Field Equations

F
αβ
;β = Jβ Rµν = 8π

(
Tµν − 1

2gµνT
α
α

)
•Time Projection: •Time-Time Projection:

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

•Space Projection: •Time-Space Projection:

B[αβ] = 1
2 ? Fαβ;γU

β − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

Bianchi Identities: (Algebraic) Bianchi Identities:

Bαα = 0 Hα
α = 0

E[αβ] = 1
2Fαβ;γU

γ E[αβ] = 0

I Space-Space part of Einstein's equations (involving the tensor
Fαβ ≡ ?R ?αµβν U

µUν) has no electromagnetic analogue.



Electromagnetism Gravity

Maxwell Field Equations Einstein Field Equations

F
αβ
;β = Jβ Rµν = 8π

(
Tµν − 1

2gµνT
α
α

)
•Time Projection: •Time-Time Projection:

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

•Space Projection: •Time-Space Projection:

B[αβ] = 1
2 ? Fαβ;γU

β − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

Bianchi Identities: (Algebraic) Bianchi Identities:

Bαα = 0 Hα
α = 0

E[αβ] = 1
2Fαβ;γU

γ E[αβ] = 0

I By replacing {Eαβ, Bαβ} ↔{Eαβ, Hαβ} in Maxwell equations,
one almost obtains some of Einstein's equations!



Comparison with Linear approach to GEM

Eqs. Grav. Tidal Tensors Linearized theory

(exact, covariant) (non-covariant)

Eαα = 4π (2ρm + Tα
α) ∇.~EG = 4πρm

Hα
α = 0 ∇.~BG = 0

E[αβ] = 0 ∇× ~EG = 0
1

2

∂~BG

∂t

H[αβ] = −4πεαβσγJσUγ 1

2
∇× ~BG = 4π~J+

∂~EG

∂t

I Equations for Gravitational Tidal Tensors are a generalization,
for arbitrary �elds and frames, of the �gravitoelectromagnetic�
equations derived in literature (eg. Thorne et al., 1977; Harris,
1991; Ciufolini & Wheeler, 1995; Ruggiero & Tartaglia, 2002).



Comparison with Linear approach to GEM

Eqs. Grav. Tidal Tensors Linearized theory

(exact, covariant) (non-covariant)

Eαα = 4π (2ρm + Tα
α) ∇.~EG = 4πρm

Hα
α = 0 ∇.~BG = 0

E[αβ] = 0 ∇× ~EG = −1
2

∂~BG

∂t

H[αβ] = −4πεαβσγJσUγ 1

2
∇× ~BG = 4π~J+

∂~EG

∂t

I Physical analogy based on linear GEM is restricted to
stationary phenomena (sheds light on ongoing debate).



Matching Between Tidal Tensors

The analogy based on tidal tensors does not rely on a similarity
between the tidal tensors.

I Despite playing analogous roles in dynamics, gravitational and
electromagnetic tidal tensors are generically very di�erent:

I gravitational tidal tensors are non-linear, spatial and symmetric
(in vacuum, in the magnetic case);

I electromagnetic tidal tensors are linear and generically
non-symmetric and non-spatial.



Matching Between Tidal Tensors

The analogy based on tidal tensors does not rely on a similarity
between the tidal tensors.

I Despite playing analogous roles in dynamics, gravitational and
electromagnetic tidal tensors are generically very di�erent:

I gravitational tidal tensors are non-linear, spatial and symmetric
(in vacuum, in the magnetic case);

I electromagnetic tidal tensors are linear and generically
non-symmetric and non-spatial.

Nevertheless, a matching occurs under certain special conditions.



Spinning Charge vs Spinning Mass

Consider the elementary example of analogous physical problems:

I the metric outside a rotating spherical mass (which is
asymptotically described by the Kerr solution);

I the electromagnetic �eld produced by a rotating charged
sphere (in Minkowski spacetime).



Spinning Charge vs Spinning Mass
Far �eld limit r →∞; observer at rest with respect to the center of
the spheres.

I Spinning Charge � Electromagnetic tidal tensors

Eαβdx
αdxβ = −2q

r3
dr2 +

q

r
dΩ2

Bαβdx
αdxβ =

q

2m

3J cos θ

r2

(
dΩ2 −

2

r2
dr2 − 2 tan θ

r
drdθ

)
I Spinning Mass � Gravitational tidal tensors

Eαβdxαdxβ ' −
2m

r3
dr2 +

m

r
dΩ2

Hαβdx
αdxβ ' 3J cos θ

r2

(
dΩ2 −

2

r2
dr2 − 2 tan θ

r
drdθ

)
I Identifying m↔ q : electric tidal tensors asymptotically

match; magnetic tidal tensors match up to a factor of 2.



Linearized gravitational perturbations

The matching occurs because far from the source, the
non-linearities of the gravitational �eld are negligible. These results
are a special case of a more general principle.

I Consider arbitrary stationary gravitational perturbations:

ds2 = − (1− 2Φ) dt2 − 4Ajdtdx
j + (ĝij + Θij) dx

idx j

and an arbitrary electromagnetic �eld in Minkowski spacetime:

Aα = (φ, ~A); ds2 = −dt2 + ĝijdx
idx j



Linearized gravitational perturbations

The matching occurs because far from the source, the
non-linearities of the gravitational �eld are negligible. These results
are a special case of a more general principle.

I Consider arbitrary stationary gravitational perturbations:

ds2 = − (1− 2Φ) dt2 − 4Ajdtdx
j + (ĝij + Θij) dx

idx j

and an arbitrary electromagnetic �eld in Minkowski spacetime:

Aα = (φ, ~A); ds2 = −dt2 + ĝijdx
idx j

I For a static observer Uα = δα0 , the linearized gravitational
tidal tensors are the same, identifying (φ, Ai )↔ (Φ, Ai ), as
the electromagnetic ones:

Eij ' −D̂i D̂jφ = Eij , Hij ' ε̂ilkD̂j D̂
lAk = Bij

(D̂ denotes covariant derivative with respect to ĝij )



Linearized gravitational perturbations

I For a static observer, gravity would seem consisting of an
electric �eld ~EG ≡ −∇φ and a magnetic �eld ~BG ≡ ∇× ~A.

I Test particles will move on geodesics described (to �rst order
in the velocity) by an equation analogous to Lorentz force law:

I and a gyroscope will precess like a magnetic dipole under a
torque τ = −~S × ~BG � which is the Lense-Thirring E�ect,
measured to a 10% accuracy by Ciufolini-Pavlis analysis of
LAGEOS data, and subject of experimental scrutiny by
NASA/Stanford Gravity Probe B and the upcoming LARES
missions.



Linearized gravitational perturbations

I However, when the �elds are not stationary in the observer's
rest frame � that is the case of a non-stationary metric, or an
observer moving in a stationary metric � the GR tidal tensors
are very di�erent from the EM ones, so that the physical
analogy (φ, Ai )↔ (Φ, Ai ) no longer holds.



Linearized gravitational perturbations

I Time-dep. setups, and observer with 4-velocity Uα = (u0, ui )

E00 = (φ̇;i + Äi )u
i

E0i = (φ;ki + Ȧk;i )u
k

Ei0 = −(φ̇;i + Äi )u
0 + 2Ȧ[j ;i ]u

j

Eij = −(φ;ij + Ȧi ;j)u
0 + 2A[k;i ]ju

k

E00 ' −
(

Φ;ji + 2Ȧj ;i + Θ̈ij

)
uiuj

E0i = Ei0 '
(

Φ;ij + 2Ȧ(i ;j) + Θ̈ij

)
u0uj + 2

(
Θ̇j[i ;k] −A[k;i ]j

)
ukuj

Eij = Eji ' 2
(

Θ̇k(i ;j) − Θ̇ij ;k +Ak;ij −A(i ;j)k

)
u0uk

+
(
2Θl(i ;j)ku

kul −Θij ;lk −Θlk;ij

)
ukul

−
(

Φ;ij + 2Ȧ(i ;j) + Θ̈ij

)
(u0)2



Linearized gravitational perturbations

I Time-dep. setups, and observer with 4-velocity Uα = (u0, ui )

B00 = −ε̂ijk Ȧj ;iuk

B0i = −ε̂ljkAj ;l
;iu

k

Bi0 = ε̂kji Ȧ
j ;ku0 + ε̂jik

(
φ̇;j + Äj

)
uk

Bij = ε̂ lm
i Am;lju

0 + ε̂lik

(
φ;l

;j + Ȧl
;j

)
uk

H00 ' ε̂imn

(
An;m

;j + Θ̇ n;m
j

)
uiuj

Hi0 ' ε̂ lk
i

(
Θ̇jk;l −Ak;lj

)
u0uj − ε̂ l

ik

(
Φ;jl + 2Ȧ(l ;j) + Θ̈lj

)
ukuj

H0i ' ε̂ lk
j

(
Θ̇ik;l −Ak;li

)
u0uj − ε̂ lm

j

(
Θl [k;i ]m + Θm[i ;k]l

)
ujuk

Hij ' ε̂ lk
i

(
Ak;lj + Θ̇jk;l

)
(u0)2



Linearized gravitational perturbations

Relative acceleration of two particles (initially) at rest:

Electromagnetism Gravity

D2δx i

dτ2
=

q

m
Eijδx

j D2δx i

dτ2
= −Eijδx

j

= − q

m
(φ;ij + Ȧi ;j)δx

j = −
(

Φ;ij + 2Ȧ(i ;j) + Θ̈ij

)
δx j

≡ q

m
Ei ;jδx

j



Linearized gravitational perturbations



Linearized gravitational perturbations

d2~x

dt2
= ∇Φ + 2

∂ ~A
∂t
− 2~v ×∇× ~A− ∂Φ

∂t
~v −

2∂Θ j
i

∂t
v i~ej

EM Lorentz Force:
d2~x

dt2
= −∇Φ− ∂~A

∂t
+ ~v ×∇× ~A



Linearized gravitational perturbations

Force on gyroscope: ~FG = −∇(~BG .~S)+ε̂ lk
i Θ̇j

k;l~ej

Force on dipole: ~FEM =
q

2m
∇(~B.~S)



Linearized gravitational perturbations

Force on gyroscope: ~FG = −∇(~BG .~S) + ε̂ lk
i Θ̇j

k;l~ej

Force on dipole: ~FEM =
q

2m
∇(~B.~S)



Linearized gravitational perturbations

Gyroscope precession:
d~S

dτ
= −~S × ~BG −

∂Θij

∂t
Sj~ei



Ultra-stationary spacetimes

Ultra-stationary spacetimes are a special class of stationary
spacetimes whose metric has a constant g00 component in the
chart where it is explicitly time independent.



Ultra-stationary spacetimes

The line element is, generically:

ds2 = −
(
dt + Ai (x

k)dx i
)2

+ ĝij(x
k)dx idx j

In these spacetimes (Herdeiro & Gibbons, 1999), the Klein-Gordon
equation:

�Ψ = m2Ψ ,

with the ansatz Ψ = e−iEtψ(x j), reduces to a time independent
Schrödinger equation: Hψ = εψ , where

H =
(~P + E~A)2

2m
, ε =

E 2 −m2

2m



Ultra-stationary spacetimes

The line element is, generically:

ds2 = −
(
dt + Ai (x

k)dx i
)2

+ ĝij(x
k)dx idx j

In these spacetimes (Herdeiro & Gibbons, 1999), the Klein-Gordon
equation:

�Ψ = m2Ψ ,

with the ansatz Ψ = e−iEtψ(x j), reduces to a time independent
Schrödinger equation: Hψ = εψ , where

H =
(~P + E~A)2

2m
, ε =

E 2 −m2

2m

I This is the non-relativistic problem of a particle with �charge�
−E and mass m, living in a curved 3-space with metric ĝij ,

under the action of a magnetic �eld ~B = ∇× ~A.



Ultra-stationary spacetimes

The covariant derivative of the magnetic �eld ~B turns out to be, up
to the usual factor of 2, the same as the exact gravito-magnetic
tidal tensor!

D̂jBi = Bij = ε̂lmi D̂j D̂
lAm = 2Hij

(D̂ denotes covariant derivatives with respect to ĝij )

I This is a highly non-trivial realization of the analogy, since
there is an exact matching between tidal tensors from a linear
theory (electromagnetism) with the ones from a non-linear
theory (gravity);

I Provides valuable insight for the understanding of some
properties of these spacetimes.



Ultra-stationary spacetimes - The Godel Universe

�Einstein told me, that Godel's papers were the most important

ones on relativity since his own original paper appeared� (Oskar
Morgenstern, 1972)

The Godel Universe is an exact solution of Einstein's equations for
the case of a homogeneous universe �lled with a perfect,
pressureless, rotating �uid.



Ultra-stationary spacetimes - The Godel Universe

I Portrayed in literature as a homogeneous rotating universe - a
conceptually hard de�nition since it means that it rotates
around every point (eg. Ciufolini, 1995);

I The vanishing magnetic part of the Weyl tensor has also led to
some conceptual di�culties:

I �The Godel metric, as with the Davidson metric, is a

counterexample to the hypothesis that rotation is the source of

the magnetic part of the Weyl tensor.� (C. Lozanovski, C.B.G.
McIntosh, 1999)

I �the gravito-magnetic �eld Hab has the source (ρ+ p)ωa,
which we identify as a gravito-magnetic 'charge' density. Note,

however, that angular momentum density does not always

generate a gravito-magnetic �eld. The Godel solution provides

a counter-example (Roy Maartens, Bruce A. Basset, 1998)



Ultra-stationary spacetimes - The Godel Universe

Within the analogy proposed herein, both these facts have a
straightforward interpretation. The line element is given by:

ds2 = − (dt + Aydy)2 + ĝijdx
idx j

with:
Ay = e

√
2ωx

[ĝij ] =

 1 0 0

0 1
2e

2
√
2ωx 0

0 0 1





Ultra-stationary spacetimes - The Godel Universe

The Klein-Gordon equation maps this metric into the magnetic �eld
~B = 2ω~ez living in the three-space of metric:

[ĝij ] =

 1 0 0

0 1
2e

2
√
2ωx 0

0 0 1


I Bij = D̂jBi = 0⇒ the magnetic �eld is uniform in this 3-space

I thus, the physical interpretation for the vanishing of the
magnetic part Hαβ of the Riemann (and hence Weyl) tensor is
that these tensors are magnetic tidal tensors, and hence they
must vanish since the Gödel universe has a uniform

gravitomagnetic �eld.



Ultra-stationary spacetimes - The Godel Universe

I The concept of homogeneous rotation is then easily
assimilated by an analogy with the more familiar picture of a
gas of charged particles subject to a uniform magnetic �eld:
there are Larmor orbits around any point.



Magnetic dipole vs Gyroscope

Electromagnetic Force
on a Magnetic Dipole

F
β
EM =

q

2m
BαβSα

Gravitational Force
on a Spinning Particle

F
β
G = −HαβSα

The explicit analogy between F
β
EM and F

β
G is ideally suited to:

I Compare the two interactions: amounts to compare Bαβ and
Hαβ , which is crystal clear from the equations for gravitational
and electromagnetic tidal tensors;

I Visualize, in analogy with the more familiar electromagnetic
ones, gravitational e�ects which are not transparent in the
Papapetrou's original form.



Magnetic dipole vs Gyroscope

Electromagnetic Force
on a Magnetic Dipole

F
β
EM =

q

2m
BαβSα

Gravitational Force
on a Spinning Particle

F
β
G = −HαβSα

Example: non-geodesic motion of a gyroscope (even) in the
absence of rotating sources (e.g. Schwarzschild spacetime) � an
e�ect readily visualized with the help of the explicit analogy:

I it is the magnetic tidal tensor as seen by the dipole/gyroscope
what determines the force exerted upon it;

I thus, a gyroscope (in non-radial motion) deviates from
geodesic motion in Schwarzschild spacetime by the same
reason that a magnetic dipole will su�er a force even in the
coulomb �eld of a point charge: in its �rest� frame, there is a
non-vanishing magnetic tidal tensor.



Magnetic dipole vs Gyroscope

I An e�ect not explained in the �rst order estimate derived in
the framework of the gravito-electromagnetic analogy known
from linearized theory (e.g. Wald, 1972; Harris, 1991):

~FG = −∇(~S · ~BG )+
∂

∂t

(
εijkφ,k

)
Si~ej

similar to the 3-D non-covariant form for the electromagnetic
force on a dipole:

~FEM = ∇(~µ.~B)+
∂

∂t

(
εijkφ,k

)
Si~ej

I as is clear in the tidal tensor formalism, such expression can be
valid only if the gyroscope is at rest in a stationary, besides
weak, gravitational �eld ⇒ therefore not suited to describe
motion.



Magnetic dipole vs Gyroscope

I An e�ect not explained in the �rst order estimate derived in
the framework of the gravito-electromagnetic analogy known
from linearized theory (e.g. Wald, 1972; Harris, 1991):

~FG = −∇(~S · ~BG )+
∂

∂t

(
εijkφ,k

)
Si~ej

similar to the 3-D non-covariant form for the electromagnetic
force on a dipole:

~FEM = ∇(~µ.~B)+
∂

∂t

(
εijkφ,k

)
Si~ej

I as is clear in the tidal tensor formalism, such expression can be
valid only if the gyroscope is at rest in a stationary, besides
weak, gravitational �eld ⇒ therefore not suited to describe
motion.



Magnetic dipole vs Gyroscope

I An e�ect not explained in the �rst order estimate derived in
the framework of the gravito-electromagnetic analogy known
from linearized theory (e.g. Wald, 1972; Harris, 1991):

~FG = −∇(~S · ~BG )+
∂

∂t

(
εijkφ,k

)
Si~ej

similar to the 3-D non-covariant form for the electromagnetic
force on a dipole:

~FEM = ∇(~µ.~B)+
∂

∂t

(
εijkφ,k

)
Si~ej

I accounts only for the coupling between the spin of the source
and the spin of the gyroscope, hiding the fact that a force acts
on the gyroscope even in the absence of rotating sources (for
example, in Schwarzschild spacetime).
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I Important pysical content lost in these 3-D expressions is
unveiled by the time components of FαEM and FαG .



Time projection of FαEM in the dipole's proper frame:

FαEMUα = −dm

dτ
=
∂~B

∂t
.~µ=

∂~B

∂t
.~nAI =

∂Φ

∂t
I = −I

˛
loop

~E . ~ds

I m = PαUα ≡ proper mass of the test particle

(Area of the loop
A = 4πa2; I ≡ current through the loop, ~n ≡unit vector normal to the loop)

I The magnetic dipole moment is given by ~µ = IA~n
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Time projection of FαEM in the dipole's proper frame:

FαEMUα = −dm

dτ
=
∂~B

∂t
.~µ =

∂~B

∂t
.~nAI =

∂Φ

∂t
I= −I

˛
loop

~E . ~ds

I The magnetic dipole may be thought as a small current loop.~E

(Area of the loop
A = 4πa2; I ≡ current through the loop, ~n ≡unit vector normal to the loop)

I ~BA~n = Φ ≡ magnetic �ux trough the loop



Therefore, by Faraday´s law of induction:

FαEMUα = −dm

dτ
=
∂~B

∂t
.~µ =

∂~B

∂t
.~nAI =

∂Φ

∂t
I = −I

˛
loop

~E . ~ds

I ~E ≡ Induced electric �eld

I Hence FαEMUα = −dm/dτ is minus the power transferred to
the dipole by Faraday's law of induction.



Time Projection of FαG � no gravitational induction

Since Hαβ is a spatial tensor, we always have

FαGUα = −dm

dτ
= 0

I No work is done by induction ⇒ the proper mass of the
gyroscope is constant.

I Spatial character of gravitational tidal tensors precludes
induction e�ects analogous to the electromagnetic ones.



Time Projection of FαG � no gravitational induction
Example: A mass loop subject to the time-varying �gravitomagnetic
�eld� of a moving Kerr Black Hole
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Time components on arbitrary frames

I Electromagnetism:
In an arbitrary frame, in which the dipole has 4-velocity
Uβ = γ(1, ~v), the time component of the force exerted on a
magnetic dipole is:

(FEM)0 ≡ −DE

dτ
=

F
β
EMUβ

γ
− F i

EMvi = −
(
1

γ

dm

dτ
+ F i

EMvi

)
≡ −(Pmech + Pind )

where E ≡ −P0 is the energy of the dipole and we identify:

I Pind =
1

γ

dm

dτ
= −F βEMUβ/γ ≡ induced power

I Pmech = F i
EMvi �mechanical� power transferred to the dipole

by the 3-force F i
EM exerted upon it.



Time components on arbitrary frames

I Gravity:
Since FαGUα = −dm/dτ = 0, we have

(FG )0 = −DE

dτ
= −F i

Gvi



Static Observers � Electromagnetism

I When the �elds are stationary in the observer's rest frame,
(FEM)0 = 0⇒ no work is done on the magnetic dipole.

I Related to a basic principle from electromagnetism: the total
amount of work done by a static magnetic �eld on an
arbitrary system of currents is zero.
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I When the �elds are stationary in the observer's rest frame,
(FEM)0 = 0⇒ no work is done on the magnetic dipole.

I Pmech and Pind exactly cancel out.



Static Observers � Gravity

I In gravity, since those induction e�ects are absent, such
cancellation does not occur:

(FG )0 = −DE

dτ
= −F i

Gvi 6= 0

I Therefore, the stationary observer must measure a non-zero
work done on the gyroscope.

I That is to say, a static �gravitomagnetic �eld� (unlike its
electromagnetic counterpart) does work.

I And there is a known consequence of this fact: the spin
dependent upper bound for the energy released when two black
holes collide, obtained by Hawking (1971) from the area law.

I For the case with spins aligned, from Hawking's expression one
can infer a gravitational spin-spin interaction energy (Wald,
1972).



Static Observers � Gravitational spin interaction

Take the gyroscope to be a small Kerr black hole of spin
S ≡
√
SαSα falling along the symmetry axis of a larger Kerr black

hole of mass m and angular momentum J = am.
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Static Observers � Gravitational spin interaction

Take the gyroscope to be a small Kerr black hole of spin
S ≡
√
SαSα falling along the symmetry axis of a larger Kerr black

hole of mass m and angular momentum J = am.

I The time component of the force acting on the small black
hole is given by:

(FG )0 ≡
DP0

Dτ
= −dE

dτ
= −

2ma
(
3r2 − a2

)
U rS

(r2 + a2)3

Integrating this equation from in�nity to the horizon one
obtains

ˆ r+

∞
(FG )0 ≡ ∆E =

aS

2m
[
m +

√
m2 − a2

] ,
which is precisely Hawking's spin-spin interaction energy for
this particular setup.



Electromagnetism Gravity

Worldline deviation:

D2δxα

Dτ2
=

q

m
Eαβδx

β

Geodesic deviation:

D2δxα

Dτ2
= −Eαβδxβ

Force on magnetic dipole:

DPβ

Dτ
=

q

2m
BαβSα

Force on gyroscope:

DPβ

Dτ
= −HαβSα

Maxwell Equations: Eqs. Grav. Tidal Tensors:

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

E[αβ] = 1
2Fαβ;γU

γ E[αβ] = 0

Bαα = 0 Hα
α = 0

B[αβ] = 1
2 ? Fαβ;γU

β − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ



Conclusions

I The tidal tensor formalism makes transparent both the
similarities and key di�erences between the gravitational and
electromagnetic interactions.

I At the same time it unveils a new physical analogy between
General relativity and electromagnetism, based on exact,
covariant, and fully general equations.

I The non-geodesic motion of a spinning test particle not only
can be easily understood, but also exactly described, by a
simple application of the analogy based on tidal tensors.

I An uni�cation within gravito-electromagnetism was also
achieved: the (exact) connection between ultra-stationary
spacetimes and magnetic �elds in some curved manifolds was
seen to originate from the same fundamental principle as the
analogy from linearized theory: a matching between tidal
tensors.



I Issues concerning previous approaches in literature were
clari�ed � namely, the limit of validity of the usual linear
approach to gravitoelectromagnetism, and the physical
interpretation of the magnetic parts of the Riemann/Weyl
tensors.
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