First LARES Workshop, July 4 2009 Roma

How can dark energy be measured

V. N. Lukash

Astro Space Centre of Lebedev Physical Institute

Dark Energy a key element of standard cosmological model goes beyond the standard model of particle physics

clue to a new physics

Dark energy – weakly interacting physical essence permeating space of the visible Universe

Three hypothesis of DE: vacuum, superweak field, modification of gravity

 $E_{DE} \sim 10^{-3} \text{ eV} \text{ (for } \rho_{DE} = E^4 \text{)}$

New energy scale ? Coincidence problem: $\rho_{DM} \approx \rho_b \approx \rho_{DE}$

Scales of fundamental interactions

1 GeVstrong100 GeVelectroweak1019 GeVgravitational

Existence of LSS is a key point for the coincidence problem

$$\Omega_{\rm rad} << \Omega_{\rm m} , \quad \Omega_{\rm DE} \le \Omega_{\rm m}$$

-window of gravitational instability
(+ initial amplitude of perturbations)

 $\Omega_{\rm rad}$ << $\Omega_{\rm b}$ $\leq \Omega_{\rm DE}$

- *condition for formation of starts* DE ceases structure formation and restores Hubble outflows

lesson: DE is a superweak field

- * for 14 Gyr two inflationary stages
- * there could be more than two, same reasons
- * simple cause of inflation -- weak massive field
- * inflation creates and restores Hubble outflows

History of the Universe is the history of origin and decay of massive fields

C_n (n = 0,1,2,...) – dark energy physics

(Today all $|C_n| < 0.1$)

Clue of DE physical nature is a precise statistical measurement of z-dependant cosmic parameters

Structure argument (LSS + CMB) $\Omega_m = \rho_m / \rho_c < 0.3 \rightarrow open \ model? \ no$

CMB anisotropy - flat 3-geometry

More than 70% of energy of the Universe stays unclustered $\rightarrow p \approx -\rho$ (dark energy)

Consistency – peculiar velocities, lensing, X-ray gas in clusters, rotational velocities **Creation of the Universe is creation of the Hubble flows**

Destruction of the Hubble flows is formation of the structure

DE prevents the structure formation and restores the Hubble flows

Growth factors of density and velocity perturbations

peculiar velocities are at the maximum today We live at the period of maximum LSS formation in the Universe

DE affects crucially dynamics of the structure generation

Use this chance:

measure **DE** by weighting the structure with redshift

Geometrical argument evolution of the scale factor **ä**<0 10⁻³⁰ **ä>**0 10⁻⁶⁰ n⁻³⁵ t(ceк)

Magnitude/redshift relation m(z) (SNIa, a standard candle)

Angular-size/redshift relation $\theta(z)$ (UCRSmas, a standard rod)

If d is a standard rod and \boldsymbol{M} is a standard candle

Measure geometry with $\theta(z)$ and $\dot{\theta}(z)$

If you know a physical size you know a distance

Four AGN properties

Size – not more than the Solar system

Brightness variability without a definite period

Fast motion of gas and/or relativistic particle flows

Huge energy release in the radio and/or optics and/or infrared and/or X-ray (emission power is equivalent to $10^8 - 10^{12}$ Suns)

Indication of a stable linear size for UCRSmas at z > 0.5

Double UCRS

Rodriguez et al. 2006

Ultimate determination of H_0 and H(z)a close future of the cosmic interferometry θ/t and z/t relations

Ultraluminal motions

Zhang and Fan 2008

GRB afterglows

CONCLUSIONS

DE determination is a matter of precise cosmology

Measure w_0 and w_0 by geometry Build up relations $\theta(z)$ and $\dot{\theta}(z)$ Model distant compact systems