Solar System Tests of Relativistic Gravity: *Recent Progress and Future Directions*

Slava G. Turyshev

Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91009 USA

First International LARES Workshop Scuola d'Ingegneria Aerospaziale, Sapienza, Università di Roma, Italy, 04 July 2009

TESTS OF RELATIVISTIC GRAVITY IN SPACE Triumph of Mathematical Astronomy in 19th Century

Discovery of Neptune: 1845

Urbain LeVerrier (1811-1877)

- 1845: the search for Planet-X:
 - − Anomaly in the Uranus' orbit \rightarrow Neptune
 - − Anomalous motion of Mercury \rightarrow Vulcan

Newtonian Gravity

General Relativity

Sir Isaac Newton (1643-1727)

Anomalous precession of Mercury's perihelion :

- 43 arcsec/cy can not be explained by Newton's gravity
- Before publishing GR, in 1915, Einstein computed the expected perihelion precession of Mercury
 - When he got out 43 arcsec/cy a new era just began!!

Almost in one year LeVerrier both confirmed the Newton's theory (Neptune) & cast doubt on it (Mercury's' anomaly).

Albert Einstein (1879-1955)

The First Test of General Theory of Relativity

Gravitational Deflection of Light: Solar Eclipse 1919

Possible outcomes in 1919:

Deflection = 0; Newton = 0.87 arcsec; Einstein = 2 x Newton = 1.75 arcsec

Einstein and Eddington, Cambridge, 1930

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScI) • STScI-PRC00-08

Theoretical Landscape of the 21th Century:

How well do we know gravity?

1 µm 1 mm	1 mAU	1 AU	1 kAU	11	крс	1 Мрс	1 Gpc	CMB
	· · · ·	How w	ell do we knov	v gravity	at vai	rious scales	s?	· · · ·
?? Well-tes	sted Reason – Pion	nably well- weer anomaly?	tested No	precise (data	Poorly – Dark	tested: <i>Matter?</i>	Just started: – Dark Energy?
Extra- dimensions, DGP	Alterno scalar –tensor DGP	tive theories ; N Theories th	of gravity, 10ND regime? nat predict dev	viations f	M Ta rom g	IOND regim VeS, STV eneral rela	re, G tivity	IR-modified gravity, f(R) gravity, branes, DGP, strings
Lab Tests	Space-B	Controlled 1	ments Experiments	Asi	tronom	Astronomy ical Observat	Astroph	hysics Cosmology
On-going lab experiments, cold atoms	LLR, GPS	On-goin exploration echniques a	g space on efforts available to ex	plore gra	Pre gala vity o	ecision spectro nxy surveys, p n various s	scopy, puslars scales	Cosmology missions, CMB research, gravity waves
<μm 1 mm	1 mAU	1 AU	1 kAU	1 s (notion	kpc	1 Mpc	1 Gpc	CMB

Solar system experiments allow for improvements in our knowledge of gravity

Empirical Foundations of General Relativity:

Confrontation Between the Theory and Experiment

$$\delta \equiv \frac{c^2}{c_0^2} - 1$$

Local Lorentz Invariance:

 Extended frameworks by Kostelecky et al., Jacobson et al.

Future experiments:

- Clock comparisons
- Clocks vs cavities
- Time of flight of high energy photons
- Birefringence in vacuum
- Neutrino oscillations
- Threshold effects in particle physics

Test of one-way speed of light:

 Important to fundamental physics, cosmology, astronomy and astrophysics

- Centrifuge, TPA, JPL: One-way propagation
- Rest: Hughes-Drever experiments

Empirical Foundations of General Relativity:

Confrontation Between the Theory and Experiment

$$\frac{\Delta\nu}{\nu} = (1+\alpha)\frac{\Delta U}{c^2}$$

Local Position Invariance:

 The outcome of any local non-gravitational experiment is independent of where & when in the universe it is performed

Splits into:

- spatial invariance
- temporal invariance
- Current best result is by Ashby et a., Phys. Rev. Lett. 98, 070802 (2007)

$$|\alpha| < 1.4 \times 10^{-1}$$

Uniqueness of Free Fall

 $(\equiv$ Weak Equivalence Principle):

$$\vec{F} = m_I \vec{a} = m_G \vec{g}$$

 $\Rightarrow m_I = m_G$

All bodies fall with the same acceleration

Define the test parameter that signifies a violation of the WEP

$$\frac{\Delta a}{a} = \frac{(a_1 - a_2)}{\frac{1}{2}(a_1 + a_2)} = \left[\frac{m_G}{m_I}\right]_1 - \left[\frac{m_G}{m_I}\right]_2$$

Let Ω is the gravitational binding energy of a test body, then the test parameter that signifies a violation of the SEP is

 $\left[\frac{m_G}{m_I}\right]_{\text{SFP}} = 1 + \eta \left(\frac{\Omega}{mc^2}\right) \qquad \qquad \frac{\Delta a}{a} = (4\beta - \gamma - 3) \left\{ \left[\frac{\Omega}{mc^2}\right]_1 - \left[\frac{\Omega}{mc^2}\right]_2 \right\}$ proposed projects

- LLR, APOLLO, and PLR testing the Strong Equivalence Principle (SEP)

TESTS OF RELATIVISTIC GRAVITY IN SPACE 40 Years of Solar System Gravity Tests

Techniques for Gravity Tests:

Radar Ranging:

- Planets: Mercury, Venus, Mars
- s/c: Mariners, Vikings, Pioneers, Cassini, Mars Global Surveyor, Mars Orbiter, etc.
- VLBI, GPS, etc.

Laser:

• SLR, LLR, interplanetary, etc.

Dedicated Gravity Missions:

- LLR (1969 on-going!!)
- GP-A, '76; LAGEOS, '76,'92; GP-B, '04; LARES, '10; LISA, 2018 (?)

New Engineering Discipline – Applied General Relativity:

- Daily life: GPS, geodesy, time transfer;
- Precision measurements: deep-space navigation & astrometry (SIM, Gaia,....).

A factor of 100 in 40 years is impressive, but is not enough for the near future!

Cassini Conjunction Experiment 2003:

- Spacecraft—Earth separation > 1 billion km
- Doppler/Range: X~7.14GHz & Ka~34.1GHz
- Result: $\gamma = 1 + (2.1 \pm 2.3) \times 10^{-5}$

Possible with Existing Technologies?!

- VLBI [current $\gamma = 3 \times 10^{-4}$]: limited to $\sim 1 \times 10^{-4}$:
 - uncertainty in the radio source coordinates
- LLR [current η = 4 ×10⁻⁴]: in 6 years ~3 ×10⁻⁵.
 - mm accuracies [APOLLO] & modeling efforts
- μ -wave ranging to a lander on Mars $\sim 6 \times 10^{-6}$
- tracking of BepiColombo s/c at Mercury ~2 ×10⁻⁶
- Optical astrometry [current $\gamma = 3 \times 10^{-3}$]: Gaia & SIM ~1-5 ×10⁻⁶ (2016/18?)

One needs a dedicated mission to explore accuracies better than 10⁻⁶ for both PPN parameters γ (and β). Interplanetary laser ranging is a possibility.

LUNAR LASER RANGING SCEINCE

It is all begun 40 year ago...

Laser Ranges between observatories on the Earth and retroreflectors on the Moon started by Apollo in 1969 and continue to the present

- 4 reflectors are ranged:
 - Apollo 11, 14 & 15 sites
 - Lunakhod 2 Rover
- LLR conducted primarily from 3 observatories:
 - McDonald (Texas, USA)
 - OCA (Grasse, France)
 - Haleakala (Hawaii, USA)
- New LLR stations:
 - Apache Point, (NM, USA)
 - Matera (Matera, Italy)
 - South Africa, former OCA LLR equipment

LUNAR LASER RANGING and TESTS OF GENERAL RELATIVITY Excellent Legacy of the Apollo Program

The Apollo 11 retroreflector initiated a shift from analyzing lunar position angles to ranges. Today LLR is the **only** continuing experiment since the Apollo-Era

LUNAR LASER RANGING SCEINCE Lunar Retroreflectors

French-built retroreflector array

Lunokhod Rover (USSR, 1972)

Beginning of the laser ranging technology. Today, laser ranging has many applications:

 Satellite laser ranging, communication systems, metrology, 3-D scanning, altimetry, etc.

LUNAR LASER RANGING SCEINCE

 $\vec{\rho}$

 \vec{r}

Historical Accuracy of LLR

Schematics of the lunar laser ranging experiment

- Raw ranges vary by ~1,000s km
- Present range accuracy ~1.5cm

Solution parameters include:

- Dissipation: tidal and solid / fluid _ core mantle boundary (CMB);
- Dissipation related coefficients for rotation & orientation terms;
- Love numbers k_2 , h_2 , l_2 ;
- Correction to tilt of equator to the ecliptic – approximates influence of CMB flattening;
- Number of relativity parameters. _

Historical Accuracy of LLR Data 1.5 cm ~ 3.6×10⁻¹¹ Near-Term Goal 1 mm ~ 2.4×10⁻¹²

LUNAR LASER RANGING and TESTS OF GENERAL RELATIVITY Testing General Relativity with LLR

Violation of the Equivalence Principle in PPN formalism:

$$\frac{\Delta a}{a} = \frac{2(a_1 - a_2)}{(a_1 + a_2)} = \left(\frac{m_G}{m_I}\right)_1 - \left(\frac{m_G}{m_I}\right)_2, \qquad \frac{m_G}{m_I} = 1 + \left(4\beta - \gamma - 3\right)\frac{\Omega}{mc^2}$$
$$\frac{\Delta a}{a} = \eta \cdot \left(\frac{\Omega_e}{m_e c^2} - \frac{\Omega_m}{m_m c^2}\right) = -\eta \cdot 4.45 \times 10^{-10}, \qquad \eta \equiv 4\beta - \gamma - 3.$$

If $\eta = 1$, this would produce a 13 m displacement of lunar orbit. By 2007, range accuracy is ~1.5 cm, the effect was not seen.

Recent LLR results (April 2008):

16,471 normal points through May 29, 2007, including 147 APOLLO points plus MLRS, OCA, and HALA

 $\Delta \left(\frac{m_G}{m_L}\right) = (-0.95 \pm 1.30) \times 10^{-13} - \text{corrected for solar radiation pressure from Vokrouhlicky (1997)}.$

 $\frac{\Delta a}{a} = (-1.95 \pm 1.91) \times 10^{-13} - \frac{\text{test of the Strong Equivalence Principle}}{\text{with Adelberger (2001) results for WEP}} \quad \eta = 4\beta - \gamma - 3 = (4.4 \pm 4.3) \times 10^{-4}$

Using Cassini '03 result
$$\gamma - 1 = (2.1 \pm 2.3) \times 10^{-5} \implies \beta - 1 = (1.2 \pm 1.1) \times 10^{-4}$$

 $K_{\rm GP} = -0.0007 \pm 0.0047$ – Geodetic / de Sitter-Fokker precession

$$\dot{G}/G = (4.9 \pm 5.7) \times 10^{-13} \text{ yr}^{-1}$$

Pulsars are getting competitive

TESTS OF GENERAL RELATIVITY WITH LASER RANGING TO PHOBOS Phobos Laser Ranging Architecture

Next Step – Interplanetary Laser Ranging

1 mm range accuracy with PLR is possible

Impact on:

- Test of general relativity
- The science of Phobos, especially its interior

@ \$550M (FY 2009 \$)

Gravity Tests with PLR vs Experiment Duration

Relativistic Effect	Current	Mission duration / N of conjunctions					
	best	1 yr / 1 cnj	3 yr / 2 cnj	6 yr / 3 cnj			
PPN parameter γ	2.3×10 ⁻⁵	3.1×10 ⁻⁷	1.4×10 ⁻⁷	7.9×10 ⁻⁸			
PPN parameter β	1.1×10 ⁻⁴	4.3×10 ⁻⁴	1.6×10 ⁻⁴	9.4×10 ⁻⁵			
Test of Strong Equiv. Principle, 77	4.3×10 ⁻⁴	1.5×10 ⁻³	2.8×10 ⁻⁴	8.8×10 ⁻⁵			
Solar oblateness coeff., J_2	2.0×10 ⁻⁷	6.9×10 ⁻⁸	3.2×10 ⁻⁸	2.3×10 ⁻⁸			
Search for time variation in the grav. constant <i>G</i> , d <i>G</i> /d <i>t</i> / <i>G</i> , yr ⁻¹	7×10 ⁻¹³	1.7×10 ⁻¹⁴	2.8×10 ⁻¹⁵	1.0×10 ⁻¹⁵			
Temporal variation of the solar mass <i>M</i> , d <i>M</i> /d <i>t/M</i> , yr ⁻¹	est:7×10 ⁻¹⁴	4.7×10 ⁻¹⁴	1.7×10 ⁻¹⁴	1.1×10 ⁻¹⁴			
Gravitational inverse square law	2×10 ⁻⁹ @ 1.5 AU	4×10 ⁻¹¹ @ 1.5 AU	2×10 ⁻¹¹ @ 1.5 AU	1×10 ⁻¹¹ @ 1.5 AU			

Simulations by W.M. Folkner, JPL

Simulations by W.M. Folkner; background graphics from (Adelberger et al., 2003)

Theoretical Landscape of the 21th Century:

Confrontation Between Theory and Experiment

Accurate test of gravitational deflection of light to 1 part in 10⁹

@ \$630M (FY 2009 \$)

TESTS OF RELATIVISTIC GRAVITY IN SPACE

Beyond Einstein Advanced Coherent Optical Network (BEACON)

Measure:

4 lengths [t₁, t₂, t₃, t₄]

Accuracy needed:

Distance: ~ 0.1 nm

Geometric redundancy:

- Enables a very accurate measurement of curvature of the Earth's gravity field
- Reduces the need for dragfree spacecraft

Accurate test of gravitational delay (Shapiro effect) of light to 1 part in 10⁹

• Recent technological progress:

arXiv:0902.3004 [gr-qc]

- Resulted in new instruments with unique performance
- Could lead to major improvements in the tests of relativistic gravity
- Already led to a number of recently proposed gravitational experiments
- Challenges remain:
 - GR is very hard to modify, embed, extend or augment (whatever is your favorite verb)...
 - Dedicated space-based experiments are very expensive the science must worth the cost...
 - Science motivation remains the biggest challenge, as there is no strong expectation to see deviations from GR in the solar system (we are mostly looking for anomalies...)

http://www.zarm.uni-bremen.de/Q2C4/

