Some aspects and perspectives of measuring Lense-Thirring with GNSS and geodetic satellites

Rolf Koenig, B. Moreno-Monge, G. Michalak

Content

- GNSS
 - Effects of solar radiation pressure (SRP)for GALILEO
 - A GPS trial to measure LT
- Geodetic satellites
 - New gravity models and recent LAGEOS analysis
- Summary

Major Forces Acting on Satellites

• GNSS

- Huge satellites
- Complicated shape
- Large solar panels, mostly oriented towards Sun
- Attitude steering
 - -> Challenging solar radiation pressure modelling
 - -> Challenging attitude/maneuver modelling

• Geodetic satellites

- Small but heavy satellites
- Canon ball shape
 - -> Relatively easy modelling of SRP and atmospheric drag

GNSS Macro Models

- A macro model is composed of an ensemble of simplest geometric figures that form the shape of the satellite
 - Larger than a lower bound for length, width, height; f.i. 10 cm
 - Rectangles, cylinders
 - Size of these geometries
 - Surface properties concerning reflectivity, diffusion, absorption wrt to visible and infrared radiation
- Attitude needed

The GALILEO Macro Model

- Little or no information given by ESA
- We constructed a macro model from ESA and OHB web pages

The GALILEO Satellite

 Surface properties from ESA or OHB pictures either gold or silver/aluminium

The GALILEO Macro Model

• Difference of the node observables for Lense-Thirring measurements due to gold or silver coating

Solar Radiation Pressure Mismodeling

• Not modeling SRP for GALILEO

Measuring Lense-Thirring with GPS?

• Despite previous, SRP scaling parameter was highly constrained

Recent Analysis with Geodetic Satellites

• Gravity field models used:

Model	Data basis	Max. D/O
EIGEN-6C	LAGEOS + GRACE JAN-2003 – JUN-2009, GOCE NOV-2009 – JUN 2010, DTU2010 global gravity anomalies	1420
EIGEN-6Sp.34	Static solution of the official ESA GOCE field GO_CONS_GCF_2_DIR_R3, LAGEOS + GRACE JAN-2003 – JUN-2009, GOCE NOV-2009 – APR 2011	240
EIGEN-51C	CHAMP + GRACE OCT-2002 – SEP-2008, DNSC08 global gravity anomalies	359
EIGEN-GRACE03S	GRACE FEB-2003 - JUL-2004	150

• Trend and annual and semi-annual variations considered

• LAGEOS and LAGEOS-2 combined

L1-/L2-Combination, EIGEN-6C

Trend and annual and semi-annual variations *neglected*

• LAGEOS and LAGEOS-2 combined

L1-/L2-Combination, EIGEN-6C w/o TVG

The Time Variable C(2,0) in EIGEN-6C

• For the analysis period

Effect of the Time Variable C(2,0) on the Node Observables

• Due to linear perturbation theory (Kaula, 1966):

Comparison of the Node Observables

• Due to dC(2,0):

Recent Analysis with Geodetic Satellites Summary

• LT measurements:

Model	LT (mas/a)	Error (%)
EIGEN-6C	44.9 ± 0.2	6.9
EIGEN-6C w/o TVG	46.5 ± 0.2	3.5
EIGEN-6Sp.34	44.5 ± 0.2	7.6
EIGEN-51C	42.1 ± 0.2	12.7
EIGEN-GRACE03S	51.4 ± 0.2	6.6

Summary

- GNSS
 - We'll further explore the potential of the GNSS constellations for measuring LT
- Geodetic satellites
 - New gravity models and recent LAGEOS analysis confirm the results published thus far

